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Abstract. We give results for the energy of the 4He and 16O nuclei using the auxiliary field diffusion
Monte Carlo and a path constraint. We compare the results with previous FHNC and cluster Monte Carlo
calculations.

PACS. 21.10.Dr Binding energies and masses – 21.60.Ka Monte Carlo models

1 Introduction

While Monte Carlo methods have been very successful in
calculating the properties of systems with central poten-
tials, accurate Monte Carlo results for nuclei with spin-
isospin potentials have been obtained only by summing
rather than sampling the spin-isospin degrees of free-
dom [1,2]. The problem with summing over the spin states
is that for a nucleus with A nucleons and N neutrons, the
number of spin-isospin states is

A!
N !(A−N)!

2A , (1)

which grows exponentially with A. For systems that con-
serve isospin, the number of states can be reduced but not
by a large factor. The exponential behavior of the spin
sums has limited these calculations to light nuclei. The
number of nucleons that can be included has increased
according to Moore’s law with an addition of about 1 nu-
cleon every 2 years.

The auxiliary field diffusion Monte Carlo (AFDMC)
method, which samples the spin-isospin states, with the
addition of a path constraint to control the fermion sign
problem, has given good results for pure neutron mat-
ter [3,4]. For nuclei, the strong tensor force in the isosin-
glet channel makes sampling the spin-isospin states more
difficult. We will review the application of the method to
the v6 interaction and apply it to the alpha-particle and
16O. Our results indicate that the path constraint built on
the simple single determinant trial wave function, while
sufficient to bind both the alpha and 16O, gives an energy
several MeV per particle too high. More accurate calcu-

a e-mail: kevin.schmidt@asu.edu

lations will require a better trial function or an otherwise
improved constraint.

2 The v6 Hamiltonian

We take the Hamiltonian to be

H =
∑

i

p2
i

2m
+

∑
i<j

M∑
p=1

vp(rij)O(p)(i, j) + V3 ,

where i and j label the two nucleons, rij is the distance
separating the two nucleons, and the O(p) include spin
and isospin operators, and M is the maximum number
of operators (i.e. 18 in v18 models). The mass m is the
average nucleon mass.

We use v6 models where the two-body potiental is
truncated at the M = 6 level. The six On(i, j) terms are
the central operator, and the spin-isospin operators τ i ·τ j ,
σi · σj , σi · σjτ i · τ j , tij , and tijτ · τ j , where tij is the
tensor operator 3σi · r̂ijσj · r̂ij − σi · σj . The τ i and σi

are the Pauli matrices for the isospin and spin of parti-
cle i. We have simply truncated the Urbana v14 [5] and
Argonne v′8 [1,6] potentials at the v6 levels.

While the neutron-proton mass difference, Coulomb
interactions, spin-orbit interactions, and three-body po-
tentials can be done with an increase in complexity, we
want first to see how well the method performs on this
simplified Hamiltonian.

3 Spin sampling

Before describing the auxiliary field diffusion Monte Carlo
method, we look at the simpler case of a variational cal-
culation.
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We can define a wave function

ΨT (R,S) = 〈R,S|ΨT 〉 , (2)

as the amplitude for finding the nucleus with nucleons at
positions R ≡ r1, r2, ...rA and an A particle spin-isospin
state S. There are many choices for the representation
of the spin state. We specify the basis states by giving
a spinor for each of the particles. That is four complex
numbers for each particle which give the amplitude of find-
ing the particle as a proton-up, proton-down, neutron-up,
neutron-down.

A variational Monte Carlo calculation of the energy
requires the evaluation of

〈H〉 =

∫
dR

∑
S,S′ Ψ∗

T (R,S)HS,S′ΨT (R,S′)∫
dR

∑
S Ψ

∗
T (R,S)ΨT (R,S)

. (3)

We can write this in two ways depending on whether we
plan to sum or sample the spins. Spin summing corre-
sponds to writing

P1(R) =
∑

S Ψ
∗
T (R,S)ΨT (R,S)∫

dR
∑

S Ψ
∗
T (R,S)ΨT (R,S)

, (4)

E1(R) =

∑
S,S′ Ψ∗

T (R,S)HS,S′ΨT (R,S′)∑
S Ψ

∗
T (R,S)ΨT (R,S)

, (5)

〈H〉 =
∫

dR E1(R)P1(R) , (6)

and sampling the spatial coordinates of the particles from
P1(R) using, for example, the Metropolis method. Notice
if ΨT is Ψ0 the ground state, E1(R) = E0 so good trial
functions will give low variance. The number of terms in
the spin sum in the numerator of P1 and E1, grows expo-
nentially in A.

Alternatively, we can sample both the positions R and
the spin-isospin S from

P2(R,S) =
Ψ∗

T (R,S)ΨT (R,S)∫
dR

∑
S Ψ

∗
T (R,S)ΨT (R,S)

, (7)

and evaluate using

E2(R) =
Ψ∗

T (R,S)
∑

S′ HS,S′ΨT (R,S′)
Ψ∗

T (R,S)ΨT (R,S)
, (8)

〈H〉 =
∑
S

∫
dR E2(R,S)P2(R,S) . (9)

Notice if ΨT is Ψ0 the ground state, E2(R) = E0 so again
good trial functions will give low variance.

Metropolis sampling of this form does not require any
spin sum. The number of terms in the spin sum of E2(R,S)
above is of order A2 with pairwise potentials, since each
term can at most change the spin or isospin of the particles
in the pair. Full spin-isospin sums are normally done be-
cause the physics leads to forms of the trial function where
the computational complexity to calculate ΨT (R,S) for a

single value of S is the same as calculating all values of S.
For example, in the pair-product form

ΨT (R,S) = 〈R,S|
∏
i<j

fc
ij [1 +

∑
p�=1

u
(p)
ij O(p)(i, j)]|Φ0〉 . (10)

For each of the A(A − 1)/2 different i, j values,
O(p)(i, j) couples to 4 or 8 other terms. Roughly, A such
factors alone couple to all spin-isospin states; the com-
putational complexity is the same whether all the spin-
isospin amplitudes are calculated or just a single value. If
trial wave functions can be devised that both contain the
physically appropriate correlations and can be evaluated
efficiently for a single spin-isospin configuration, sampling
with Monte Carlo methods is straightforward.

4 The auxiliary field method

Since we cannot use good trial functions to sample spins
for large A, we require an alternative method of selecting
spin samples. We apply the auxiliary field and constrained
path ideas of S. Zhang, J. Carlson, and J. Gubernatis [7,8]
to the spin-isospin part of the nuclear Hamiltonian, while
sampling the spatial part as in Green’s function or diffu-
sion Monte Carlo.

The basic diffusion Monte Carlo method writes the
Schrödinger equation in imaginary time (measured in
units of energy−1).

(H − ET )|Ψ(t)〉 = − ∂

∂t
|Ψ(t)〉 , (11)

which is a diffusion equation in R space. The formal solu-
tion is

|Ψ(t)〉 = e−(H−ET )t|Ψ(0)〉 . (12)

Expanding the initial state in eigenstates of H,

H|n〉 = En|n〉 ,
|Ψ(0)〉 =

∑
n

an|n〉 , (13)

shows that the long-time solution converges to the lowest-
energy state not orthogonal to |Ψ(0)〉.

|Ψ(t)〉 = e−(E0−ET )t


a0|0〉 +

∑
n�=0

e−(En−E0)tan|n〉

 .

(14)
For short-time propagation, the Trotter expansion can

be used to calculate an approximate propagator

e−H∆t = e−V ∆t
2 e−

P2
2m ∆te−V ∆t

2 +O(∆t3) . (15)

In R representation the P 2/2m term is the free propaga-
tor, and the V terms do not couple different R values. The
P 2/2m terms are diagonal in spin-isospin (this is modified
if the physical unequal masses of the protons and neutrons
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are used) so that the spin-isospin dependence is entirely
in the potential. The free propagator is

G(R,R′,∆t) = 〈R|e−(H−ET )∆t|R′〉 ,

=
[

1
2πσ2

] 3A
2

e−
(R−R′)2

2σ2 e−[
V (R)+V (R′)

2 −ET ]∆t ,

σ2 = 2
�

2

2m
∆t . (16)

Given positions for all the nucleons, we can obtain new
positions in the next step by sampling the Gaussian.

The potential propagator matrix elements are

〈RS′| exp(−V ∆t)|RS〉 , (17)

which for the v6 potential has essentially the same form
as the pair-product wave function. We have already seen
that computational complexity makes the evaluation of
this matrix element unfeasible beyond small A. We there-
fore need to find a sensible way to sample the spin-isospin
S′ given the original spin-isospin state.

Furthermore, we would like the spin propagation to
be local in some sense. That is, as ∆t → 0 we want our
propagator to go smoothly to the identity and the walker
remains the same as ∆t → 0. One way to do this is to
use a general spinor basis. For example, starting with a
spin-up particle rather than flipping the spin with a small
probability in the next time step, we sample spinors that
have a small down amplitude.

We therefore look for a method which will propagate a
state represented by an outer product of spinors, one for
each particle, to another state of the same form. One way
is to write the spin-isospin part of the propagator as

∑
samples

A∏
i=1

[ai + bi · σi + ci · τ i + σi ·
↔
d i · τ i] . (18)

The Hubbard-Stratonovich or auxiliary field method
accomplishes this breakup. For example,

exp(−σx1σx2v
σ
12∆t)

= cosh(vσ
12∆t)[1 − σx1σx2 tanh(vσ

12∆t)]

= cosh(vσ
12∆t)

1
2

∑
ε=±1

[
1 + εσx1

√
tanh(−vσ

12∆t)
]
,

[
1 + εσx2

√
tanh(−vσ

12∆t)
]
.

As ∆t → 0 this goes smoothly to 1, and for nonzero
∆t, the spinors each get multiplied by a near-unit 2 × 2
matrix. The ε variables are sampled using the Monte Carlo
method.

The breakup above requires 3 Hubbard-Stratonovich
variables for each pair of particles for a spin-exchange and
tensor interaction, or 3A(A− 1)/2 variables.

To reduce this number, we diagonalize the interaction
in spin-isospin space. This requires order (A3) operations,
but the trial wave function determinant has the same com-
plexity. This breakup is similar to those used in auxiliary
field breakups in Shell Model Monte Carlo.

For A particles, the v6 interaction can be written as

V =
∑
i<j

[
6∑

p=1

vp(rij)O(p)(i, j)

]
= Vsi + Vsd

= Vsi +
1
2

∑
i,α,j,β

σi,αA
(σ)
i,α,j,βσj,β

+
1
2

∑
i,α,j,β

σi,αA
(στ)
i,α,j,βσj,βτ i · τ j

+
1
2

∑
i,j

A
(τ)
i,j τ i · τ j .

Here, Vsi is the spin-independent part of the potential and
Vsd is the spin-dependent part.

The A-matrices are zero when i = j and they are sym-
metric. Note however, that we can include an arbitrary
nonzero i = j term if we include a corresponding central
counterterm. This can shift the spectrum of the operators
to make, for example, all the eigeinvalues negative if de-
sired. Since the A-matrices are real and symmetric they
have real eigenvalues and eigenvectors. The eigenvectors
and eigenvalues are defined by∑

j,β

A
(σ)
i,α,j,βψσ

n(j) · x̂β = λ(σ)
n ψσ

n(i) · x̂α . (19)

The matrices can be written in terms of their eigenvec-
tors and eigenvalues to give the spin-dependent potential

Vsd =
1
2

∑
i,j,n

σi · ψ(σ)
n (i)λ(σ)

n ψ(σ)
n (j) · σj

+
1
2

∑
i,j,n

σi · ψ(στ)
n (i)λ(στ)

n ψ(στ)
n (j) · σjτ i · τ j

+
1
2

∑
i,j,n

τ i · τ jψ
(τ)
n (i)λ(τ)

n ψ(τ)
n (j) . (20)

We want the squares of operators so we write

Vsd =
1
2

3A∑
n=1

(O(σ)
n )2λ(σ)

n (21)

+
1
2

3∑
α=1

3A∑
n=1

(O(στ)
nα )2λ(στ)

n (22)

+
1
2

3∑
α=1

A∑
n=1

(O(τ)
nα )2λ(τ)

n , (23)

with

O(σ)
n =

∑
i

σi · ψ(τ)
n (i)

O(στ)
nα =

∑
i

τiασi · ψ(στ)
n (i)

O(τ)
nα =

∑
i

τiαψ
(τ)
n (i) . (24)
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The Hubbard-Stratonovich transformation is

e−
1
2 λnO2

n∆t =
(
∆t|λn|

2π

) 1
2
∫ ∞

−∞
dxe−

1
2 ∆t|λn|x2−∆tsλnOnx ,

(25)

where s is 1 for λ < 0, and s is i for λ > 0.
Our On do not commute, so we need to keep the time

steps small so that the commutator terms can be ignored.
Each of the On is a sum of 1-body operators as required
above. We require 3A Hubbard-Stratonovich variables for
the σ terms, 9A variables for the στ terms, and 3A vari-
ables for the τ terms. Each time step requires the diago-
nalization of two 3A×3A matrices and one A×A matrix.

Once the Hubbard-Stratonovich variables have been
sampled, the resulting propagator acting on a walker con-
sisting of the positions and spinors for each particle gives
a single new walker.

5 The path constraint

We still have the usual fermion sign problem. In this case
the overlap of our walkers with the trial function will be
complex. We constrain the path to regions where the real
part of the overlap with our trial function is positive. For
spin-independent potentials this reduces to the fixed-node
approximation.

6 The trial wave function

We use the simplest trial function

|ΨT 〉 =


∏

i<j

fc
ij


A

[∏
i

φi(ri −Rcm, si)

]
, (26)

where A is an antisymmetrization operator, φ are single-
particle orbitals, and Rcm is the center-of-mass position of
the nucleus. Given a set of positions and spinors, the anti-
symmetrization produces a determinant of single-particle
orbitals. For the nuclei here we have chosen s-orbitals
for the alpha-particle and s- and p-orbitals for 16O, con-
structed as the orbitals of the Wood-Saxon well. The pa-
rameters of the well were adjusted to give roughly the cor-
rect nuclear radius. The trial wave function is translation-
ally invariant and requires no center-of-mass correction.

The overlap of our walker with the trial function is the
determinant of the space-spin orbitals evaluated at the
walker position and spinor for each particle multiplied by
a central Jastrow product.

7 The algorithm

Our algorithm becomes:

1. Sample |R,S〉 initial walkers from |〈ΨT |R,S〉|2 using
Metropolis Monte Carlo.

2. Propagate in the usual diffusion Monte Carlo way with
a drifted Gaussian for half a time step.

3. Diagonalize, for each walker, the potential matrix.
4. Loop over the eigenvectors, sampling the correspond-

ing Hubbard-Stratonovich variable and update the
spinors. We use the matrix elements 〈ΨT |σi|R,S〉,
〈ΨT |τ i|R,S〉, and 〈ΨT |σiτ i|R,S〉 as replacements to
the operators in the exponential to approximately pre-
dict the relative weights of the positive and nega-
tive samples from the Hubbard-Stratonovich variables.
Then propagate with the correct operators and divide
by these important sampling probabilities. This pref-
erentially samples the values that we predict will give
a larger weight. Since the sampled probabilities are di-
vided out we change only the variance not the averages.

5. Propagate with a drifted Gaussian for the remaining
half of a time step.

6. Combine all weight factors and evaluate new value of
〈ΨT |R,S〉. If the real part is less than 0, enforce the
constrained path by dropping the walker.

7. Evaluate the averages of 〈ΨT |R,S〉 and 〈ΨT |H|R,S〉
to calculate the energy.

8. Repeat steps 2 through 7 as necessary until conver-
gence.

8 Results and discussion

We show the results with the v6 truncated potentials in
table 1. Since our trial function contains no tensor correla-
tions, the variational estimate is not bound. However the
auxiliary field diffusion Monte Carlo gives a bound result.
Unfortunately, the path constraint imposed by our simple
wave function is not sufficient to obtain a good answer.
For the alpha-particle, Joe Carlson [9] has calculated the
energy with the Argonne v′8 truncated to v6 as −22.8 ±
0.2 MeV. We see that our constraint gives an energy that
is about 5 MeV too high. The exact energy for the 16O
nucleus is not known. However, correlated basis function
calculations [10] with the Urbana v14 potential truncated
at the v6 level give an energy of −82.40 MeV which is
within our error bars. This indicates that our method is
giving energies that are roughly on par with these varia-
tional calculations, but presumably are above the correct
energy by something of the order of 1-2 MeV per nucleon
as in the alpha-particle. With the same CM correction, the
cluster MC result [11] using just their expectation of the
v6 part of the Argonne v14 potential [12] and the kinetic

Table 1. The calculated ground-state energy in MeV for the
v6 truncated Argonne v′

8 and Urbana v14 potentials.

Nucleus Potential EConstrained

4He Urbana −20.7(3)
4He Argonne −17.9(1)
16O Urbana −84(2)
16O Argonne −57(3)
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energy is −86.6 MeV. Previous constrained path AFDMC
calculations [13] using v4-type potentials (without tensor
force) gave an energy lower than FHNC in nuclear mat-
ter and in a very good agreement with accurate few-body
variational calculations for the alpha-particle.

From these results it is clear that while qualitative in-
clusion of the effect of the tensor forces is being included
even with our crude trial function for the constraint, ac-
curate calculations will require better constraints or a
method without constraints in order to give trustworthy
results for nuclear binding energies. We are working in this
direction.
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